深入分析Linux CPUFreq系统1:系统概述

Linuxer2019年2月11日
Linux动态频率调节系统CPUFreq之一:概述

随着技术的发展,我们对CPU的处理能力提出了越来越高的需求,芯片厂家也对制造工艺不断地提升。现在的主流PC处理器的主频已经在3GHz左右,就算是智能手机的处理器也已经可以工作在1.5GHz以上,可是我们并不是时时刻刻都需要让CPU工作在最高的主频上,尤其是移动设备和笔记本电脑,大部分时间里,CPU其实工作在轻负载状态下,我们知道:主频越高,功耗也越高。为了节省CPU的功耗和减少发热,我们有必要根据当前CPU的负载状态,动态地提供刚好足够的主频给CPU。在Linux中,内核的开发者定义了一套框架模型来完成这一目的,它就是CPUFreq系统。

1. sysfs接口

我们先从CPUFreq提供的sysfs接口入手,直观地看看它提供了那些功能。以下是我的电脑输出的结果:

droidphone@990:~$ cd /sys/devices/system/cpu
droidphone@990:/sys/devices/system/cpu$ ls
cpu0 cpu3 cpu6 cpuidle offline power release
cpu1 cpu4 cpu7 kernel_max online present uevent
cpu2 cpu5 cpufreq modalias possible probe

所有与CPUFreq相关的sysfs接口都位于:/sys/devices/system/cpu下面,我们可以看到,8个cpu分别建立了一个自己的目录,从cpu0到cpu7,我们再看看offline和online以及present的内容:

droidphone@990:/sys/devices/system/cpu$ cat online
0-7
droidphone@990:/sys/devices/system/cpu$ cat offline
8-15
droidphone@990:/sys/devices/system/cpu$ cat present
0-7
droidphone@990:/sys/devices/system/cpu$

online代表目前正在工作的cpu,输出显示编号为0-7这8个cpu在工作,offline代表目前被关掉的cpu,present则表示主板上已经安装的cpu,由输出可以看到,我的主板可以安装16个cpu(因为intel的超线程技术,其实物理上只是8个),第8-15号cpu处于关闭状态(实际上不存在,因为present只有0-7)。

接着往下看:

droidphone@990:/sys/devices/system/cpu/cpu0$ ls
cache cpuidle microcode power thermal_throttle uevent
cpufreq crash_notes node0 subsystem topology
droidphone@990:/sys/devices/system/cpu/cpu0$ cd cpufreq/
droidphone@990:/sys/devices/system/cpu/cpu0/cpufreq$ ls
affected_cpus related_cpus scaling_max_freq
bios_limit scaling_available_frequencies scaling_min_freq
cpuinfo_cur_freq scaling_available_governors scaling_setspeed
cpuinfo_max_freq scaling_cur_freq stats
cpuinfo_min_freq scaling_driver
cpuinfo_transition_latency scaling_governor
droidphone@990:/sys/devices/system/cpu/cpu0/cpufreq$

在我的电脑上,部分的值如下:

cpuinfo_cur_freq: 1600000

cpuinfo_max_freq: 3401000

cpuinfo_min_freq: 1600000

scaling_cur_freq: 1600000

scaling_max_freq: 3401000

scaling_min_freq: 1600000

所以,我的cpu0的最低运行频率是1.6GHz,最高是3.4GHz,目前正在运行的频率是1.6GHz,前缀cpuinfo代表的是cpu硬件上支持的频率,而scaling前缀代表的是可以通过CPUFreq系统用软件进行调节时所支持的频率。cpuinfo_cur_freq代表通过硬件实际上读到的频率值,而scaling_cur_freq则是软件当前的设置值,多数情况下这两个值是一致的,但是也有可能因为硬件的原因,有微小的差异。scaling_available_frequencies会输出当前软件支持的频率值,看看我的cpu支持那些频率:

droidphone@990:/sys/devices/system/cpu/cpu0/cpufreq$ cat scaling_available_frequencies
3401000 3400000 3000000 2800000 2600000 2400000 2200000 2000000 1800000 1600000
droidphone@990:/sys/devices/system/cpu/cpu0/cpufreq$

Oh,从1.6GHz到3.4GHz,一共支持10挡的频率可供选择。scaling_available_governors则会输出当前可供选择的频率调节策略:

conservative ondemand userspace powersave performance

一共有5中策略供我们选择,那么当前系统选用那种策略?让我们看看:

dong@dong-990:/sys/devices/system/cpu/cpu0/cpufreq$ cat scaling_governor
ondemand

OK,我的系统当前选择ondemand这种策略,这种策略的主要思想是:只要cpu的负载超过某一个阀值,cpu的频率会立刻提升至最高,然后再根据实际情况降到合适的水平。详细的情况我们留在后面的章节中讨论。scaling_driver则会输出当前使用哪一个驱动来设置cpu的工作频率。

当我们选择userspace作为我们的调频governor时,我们可以通过scaling_setspeed手工设置需要的频率。powersave则简单地使用最低的工作频率进行运行,而performance则一直选择最高的频率进行运行。

2. 软件架构

通过上一节的介绍,我们可以大致梳理出CPUFreq系统的构成和工作方式。首先,CPU的硬件特性决定了这个CPU的最高和最低工作频率,所有的频率调整数值都必须在这个范围内,它们用cpuinfo_xxx_freq来表示。然后,我们可以在这个范围内再次定义出一个软件的调节范围,它们用scaling_xxx_freq来表示,同时,根据具体的硬件平台的不同,我们还需要提供一个频率表,这个频率表规定了cpu可以工作的频率值,当然这些频率值必须要在cpuinfo_xxx_freq的范围内。有了这些频率信息,CPUFreq系统就可以根据当前cpu的负载轻重状况,合理地从频率表中选择一个合适的频率供cpu使用,已达到节能的目的。至于如何选择频率表中的频率,这个要由不同的governor来实现,目前的内核版本提供了5种governor供我们选择。选择好适当的频率以后,具体的频率调节工作就交由scaling_driver来完成。CPUFreq系统把一些公共的逻辑和接口代码抽象出来,这些代码与平台无关,也与具体的调频策略无关,内核的文档把它称为CPUFreq Core(/Documents/cpufreq/core.txt)。另外一部分,与实际的调频策略相关的部分被称作cpufreq_policy,cpufreq_policy又是由频率信息和具体的governor组成,governor才是具体策略的实现者,当然governor需要我们提供必要的频率信息,governor的实现最好能做到平台无关,与平台相关的代码用cpufreq_driver表述,它完成实际的频率调节工作。最后,如果其他内核模块需要在频率调节的过程中得到通知消息,则可以通过cpufreq notifiers来完成。由此,我们可以总结出CPUFreq系统的软件结构如下:

3. cpufreq_policy

一种调频策略的各种限制条件的组合称之为policy,代码中用cpufreq_policy这一数据结构来表示:

struct cpufreq_policy {

        cpumask_var_t           cpus;   
        cpumask_var_t           related_cpus; 

        unsigned int            shared_type; 

        unsigned int            cpu;    
        unsigned int            last_cpu; 

        struct cpufreq_cpuinfo  cpuinfo;

        unsigned int            min;    /* in kHz */
        unsigned int            max;    /* in kHz */
        unsigned int            cur;    

        unsigned int            policy; 
        struct cpufreq_governor *governor; 
        void                    *governor_data;

        struct work_struct      update; 


        struct cpufreq_real_policy      user_policy;

        struct kobject          kobj;
        struct completion       kobj_unregister;
};

其中的各个字段的解释如下:

cpus和related_cpus这两个都是cpumask_var_t变量,cpus表示的是这一policy控制之下的所有还出于online状态的cpu,而related_cpus则是online和offline两者的合集。主要是用于多个cpu使用同一种policy的情况,实际上,我们平常见到的大多数系统中都是这种情况:所有的cpu同时使用同一种policy。我们需要related_cpus变量指出这个policy所管理的所有cpu编号。

cpu和last_cpu 虽然一种policy可以同时用于多个cpu,但是通常一种policy只会由其中的一个cpu进行管理,cpu变量用于记录用于管理该policy的cpu编号,而last_cpu则是上一次管理该policy的cpu编号(因为管理policy的cpu可能会被plug out,这时候就要把管理工作迁移到另一个cpu上)。

cpuinfo 保存cpu硬件所能支持的最大和最小的频率以及切换延迟信息。

min/max/cur 该policy下的可使用的最小频率,最大频率和当前频率。

policy 该变量可以取以下两个值:CPUFREQ_POLICY_POWERSAVE和CPUFREQ_POLICY_PERFORMANCE,该变量只有当调频驱动支持setpolicy回调函数的时候有效,这时候由驱动根据policy变量的值来决定系统的工作频率或状态。如果调频驱动(cpufreq_driver)支持target回调,则频率由相应的governor来决定。

governor和governor_data 指向该policy当前使用的cpufreq_governor结构和它的上下文数据。governor是实现该policy的关键所在,调频策略的逻辑由governor实现。

update 有时在中断上下文中需要更新policy,需要利用该工作队列把实际的工作移到稍后的进程上下文中执行。

user_policy 有时候因为特殊的原因需要修改policy的参数,比如溫度过高时,最大可允许的运行频率可能会被降低,为了在适当的时候恢复原有的运行参数,需要使用user_policy保存原始的参数(min,max,policy,governor)。

kobj 该policy在sysfs中对应的kobj的对象。

4. cpufreq_governor

所谓的governor,我把它翻译成:调节器。governor负责检测cpu的使用状况,从而在可用的范围中选择一个合适的频率,代码中它用cpufreq_governor结构来表示:

struct cpufreq_governor {
        char    name[CPUFREQ_NAME_LEN];
        int     initialized;
        int     (*governor)     (struct cpufreq_policy *policy,
                                 unsigned int event);
        ssize_t (*show_setspeed)        (struct cpufreq_policy *policy,
                                         char *buf);
        int     (*store_setspeed)       (struct cpufreq_policy *policy,
                                         unsigned int freq);
        unsigned int max_transition_latency; /* HW must be able to switch to
                        next freq faster than this value in nano secs or we
                        will fallback to performance governor */
        struct list_head        governor_list;
        struct module           *owner;
};

其中的各个字段的解释如下:

name 该governor的名字。

initialized 初始化标志。

governor 指向一个回调函数,CPUFreq Core会在不同的阶段调用该回调函数,用于该governor的启动、停止、初始化、退出动作。

list_head 所有注册的governor都会利用该字段链接在一个全局链表中,以供系统查询和使用。

5. cpufreq_driver

上一节提到的gonvernor只是负责计算并提出合适的频率,但是频率的设定工作是平台相关的,这需要cpufreq_driver驱动来完成,cpufreq_driver的结构如下:

struct cpufreq_driver {
        struct module           *owner;
        char                    name[CPUFREQ_NAME_LEN];
        u8                      flags;

        bool                    have_governor_per_policy;

        /* needed by all drivers */
        int     (*init)         (struct cpufreq_policy *policy);
        int     (*verify)       (struct cpufreq_policy *policy);

        /* define one out of two */
        int     (*setpolicy)    (struct cpufreq_policy *policy);
        int     (*target)       (struct cpufreq_policy *policy,
                                 unsigned int target_freq,
                                 unsigned int relation);

        /* should be defined, if possible */
        unsigned int    (*get)  (unsigned int cpu);

        /* optional */
        unsigned int (*getavg)  (struct cpufreq_policy *policy,
                                 unsigned int cpu);
        int     (*bios_limit)   (int cpu, unsigned int *limit);

        int     (*exit)         (struct cpufreq_policy *policy);
        int     (*suspend)      (struct cpufreq_policy *policy);
        int     (*resume)       (struct cpufreq_policy *policy);
        struct freq_attr        **attr;
};

相关的字段的意义解释如下:

name 该频率驱动的名字。

init 回调函数,该回调函数必须实现,CPUFreq Core会通过该回调函数对该驱动进行必要的初始化工作。

verify 回调函数,该回调函数必须实现,CPUFreq Core会通过该回调函数检查policy的参数是否被驱动支持。

setpolicy/target 回调函数,驱动必须实现这两个函数中的其中一个,如果不支持通过governor选择合适的运行频率,则实现setpolicy回调函数,这样系统只能支持CPUFREQ_POLICY_POWERSAVE和CPUFREQ_POLICY_PERFORMANCE这两种工作策略。反之,实现target回调函数,通过target回调设定governor所需要的频率。

get 回调函数,用于获取cpu当前的工作频率。

getavg 回调函数,用于获取cpu当前的平均工作频率。

6. cpufreq notifiers

CPUFreq的通知系统使用了内核的标准通知接口。它对外提供了两个通知事件:policy通知和transition通知。

policy通知用于通知其它模块cpu的policy需要改变,每次policy改变时,该通知链上的回调将会用不同的事件参数被调用3次,分别是:

CPUFREQ_ADJUST 只要有需要,所有的被通知者可以在此时修改policy的限制信息,比如温控系统可能会修改在大允许运行的频率。

CPUFREQ_INCOMPATIBLE 只是为了避免硬件错误的情况下,可以在该通知中修改policy的限制信息。

CPUFREQ_NOTIFY 真正切换policy前,该通知会发往所有的被通知者。

transition通知链用于在驱动实施调整cpu的频率时,用于通知相关的注册者。每次调整频率时,该通知会发出两次通知事件:

CPUFREQ_PRECHANGE 调整前的通知。
CPUFREQ_POSTCHANGE 完成调整后的通知。

当检测到因系统进入suspend而造成频率被改变时,以下通知消息会被发出:

CPUFREQ_RESUMECHANGE


作者:droidphone
原文:https://blog.csdn.net/DroidPhone/article/details/9346981

免责申明:本文转载或整理于网络,版权归原作者所有。如涉及作品版权问题,请与我们联系。如若转载请联系原作者。
Linux、CPUFreq系统
说点什么
登录 后参与评论
1条评论
谷良2019年2月11日
把CPUFreq系统讲得很明白了